Class Name : Lacoste College Algebra Fall 2019
Student Name : \qquad

Instructor Note : All practice problems for Exam 3. There are multiple versions so that you can try challenging problems more than once.

Question 1 of 58

Graph the equation.

$$
y=3|x|
$$

Question 2 of 58

Graph the parabola.

$$
y=3 x^{2}
$$

Question 3 of 58

Graph

$$
y=\frac{7}{4} x^{3}
$$

Question 4 of 58

The function f is defined as follows.

$$
f(x)=\sqrt[3]{x}+3
$$

Find $f(125)$ and $f(-64)$.

$$
\begin{aligned}
& f(125)=\square \\
& f(-64)=\square
\end{aligned}
$$

Question 5 of 58

Graph the equation.

$$
y=2|x-4|+3
$$

Question 6 of 58

Graph the parabola.

$$
y=(x+4)^{2}-1
$$

Question 7 of 58

Graph the function $f(x)=\sqrt{x}-2$.

Question 8 of 58

Graph the function $f(x)=3 \sqrt{x}-1$.

Question 9 of 58

Graph the following function.

$$
f(x)=\sqrt[3]{x+3}
$$

Question 10 of 58

For each graph, choose the function that best describes it.

(a)	(b)
$\left\lvert\, \begin{array}{ll} \circ f(x)=1 & \text { ○ } f(x)=\|x\| \\ \circ f(x)=x & \text { ○ } f(x)=\frac{1}{x} \\ \circ f(x)=x^{2} & \text { ० } f(x) \\ \circ f(x)=x^{3} & \text { ○ } f(x)=\frac{1}{x^{2}} \end{array}\right.$	$\begin{array}{ll} \circ f(x)=1 & \circ f(x)=\|x\| \\ \circ f(x)=x & \circ f(x)=\frac{1}{x} \\ f(x)=x^{2} & \circ f(x)=x^{3} \\ f(x) & \circ f(x)=\frac{1}{x^{2}} \\ f(x)=\sqrt{x} & \end{array}$
(c)	(d)
$\begin{array}{ll} f(x)=1 & \circ f(x)=\|x\| \\ \circ f(x)=x & \circ f(x)=\frac{1}{x} \\ f(x)=x^{2} & \circ f(x)=x^{3} \\ f(x)=\sqrt{x} & \circ f(x)=\frac{1}{x^{2}} \end{array}$	$\left\lvert\, \begin{array}{ll} \circ f(x)=1 & \circ f(x)=\|x\| \\ \circ f(x)=x & \circ f(x)=\frac{1}{x} \\ f(x)=x^{2} & \circ f(x) \\ f(x)=x^{3} & \circ f(x)=\frac{1}{x^{2}} \end{array}\right.$

Question 11 of 58

Translate each graph as specified below.
(a) The graph of $y=x^{2}$ is shown. Translate it to get the graph of $y=(x-1)^{2}$.
(b) The graph of $y=x^{2}$ is shown. Translate it to get the graph of $y=x^{2}+4$.

Question 12 of 58

Below is the graph of $y=x^{2}$.
Translate it to make it the graph of $y=(x-5)^{2}+1$.

Question 13 of 58

Translate each graph as specified below.
(a) The graph of $y=|x|$ is shown. Translate it to get the graph of $y=|x+4|$.
(b) The graph of $y=|x|$ is shown. Translate it to get the graph of $y=|x|-1$.

Question 14 of 58

Below is the graph of $y=|x|$.
Translate it to make it the graph of $y=|x-5|-3$.

Question 15 of 58

Fill in the information about the absolute value functions below.

| | $\left[y==3 / 4^{*}\|x\|\right]$ | $[y==-(2 *\|x\|)]$ | $\left[y==1 / 2^{*}\|x\|\right]$ | $\left[y==-\left(4^{*}\|x\|\right)\right]$ |
| :--- | :--- | :--- | :--- | :--- | :---: |
| (a) For each function,
 choose whether its graph
 opens up or down | - up
 - down | -up
 -down | -up
 -down | -up
 - down |
| (b) Choose the function
 with the narrowest graph | 0 | 0 | 0 | 0 |
| (c) Choose the function
 with the widest graph | 0 | 0 | 0 | 0 |

Question 16 of 58

If the graph of the function h defined by

$$
h(x)=5 x^{2}+8
$$

is translated vertically downward by 6 units, it becomes the graph of a function f.
Find the expression for $f(x)$.

Question 17 of 58

Translate each graph as specified below.
(a) The graph of $y=f(x)$ is shown. Translate it to get the graph of $y=f(x+5)$.
(b) The graph of $y=g(x)$ is shown. Translate it to get the graph of $y=g(x)+2$.

Question 18 of 58

Below is the graph of $y=|x|$.
Translate it to make it the graph of $y=|x+1|-3$.

Question 19 of 58

Transform each graph as specified below.
The graph of $y=f(x)$ is shown. Graph $y=\frac{1}{2} f(x)$.

The graph of $y=g(x)$ is shown. Graph $y=g\left(\frac{1}{2} x\right)$.

Question 20 of 58

Complete the following.
The graph of $y=f(x)$ is shown. Draw the graph of $y=2 f(x-4)$.

The graph of $y=g(x)$ is shown. Draw the graph of $y=g(-x)-1$.

Question 21 of 58

Below is the graph of $y=|x|$.
Transform it to make it the graph of $y=3|x+1|+4$.

Question 22 of 58

The graph of f (in blue) is translated a whole number of units horizontally and vertically to obtain the graph of k (in red).

The function f is defined by $f(x)=x^{2}$.
Write down the expression for $k(x)$.

Question 23 of 58

For each graph, select all symmetries that apply.

Symmetry:
$\square x$-axis
$\square y$-axis
\square origin
\square none of these

Symmetry:
$\square x$-axis
$\square y$-axis
\square origin
\square none of these
(c)

Symmetry:
$\square x$-axis
$\square y$-axis
\square origin
\square none of these

Question 24 of 58

For each equation, determine whether its graph is symmetric with respect to the x-axis, the y-axis, and the origin.
Check all symmetries that apply.

$x=y^{4}-y^{2}+2$			$35 x^{4}+30 y^{4}=82$		
Symmetry:			Symmetry:		
Γ x-axis	$y \text {-axis }$	origin	Г x-axis	$\begin{aligned} & \square \\ & y \text {-axis } \end{aligned}$	Γ origin
$\stackrel{\Gamma}{\text { none }}$	bove		$\square_{\text {none of }}$	above	

Question 25 of 58

Suppose that the function g is defined, for all real numbers, as follows.

$$
g(x)= \begin{cases}-\frac{1}{4} x^{2}+4 & \text { if } x \neq 2 \\ 4 & \text { if } x=2\end{cases}
$$

Find $g(-1), g(2)$, and $g(4)$.
$g(-1)$
$g(2)$
$g(4)$

Question 26 of 58

Determine the interval(s) on which the function is (strictly) increasing.
Write your answer as an interval or list of intervals.
When writing a list of intervals, make sure to separate each interval with a comma and to use as few intervals as possible.

Click on "None" if applicable.

Question 27 of 58

Here is a graph of the function f.

Use the graph to find the following.
If there is more than one answer, separate them with commas.
(a) All values at which f has a local maximum:
(b) All local maximum values of f.

Question 28 of 58

Suppose that the function f is defined as follows.

$$
f(x)=\left\{\begin{array}{cc}
-2 & \text { if }-2 \leq x<-1 \\
-1 & \text { if }-1 \leq x<0 \\
0 & \text { if } 0 \leq x<1 \\
1 & \text { if } 1 \leq x<2
\end{array}\right.
$$

Graph the function f.

Question 29 of 58

Suppose that the function f is defined, for all real numbers, as follows.

$$
f(x)=\left\{\begin{array}{cc}
x-4 & \text { if } x<2 \\
-2 x+2 & \text { if } x \geq 2
\end{array}\right.
$$

Graph the function f. Then determine whether or not the function is continuous.

Is the function continuous?
o Yes
o No

Question 30 of 58

Suppose that the function f is defined for all real numbers as follows.

$$
f(x)=\left\{\begin{array}{ccc}
1-x^{2} & \text { if } & x<1 \\
-2 x+2 & \text { if } & x \geq 1
\end{array}\right.
$$

Graph the function f. Then determine whether or not the function is continuous.

Question 31 of 58

Four functions are given below. Either the function is defined explicitly, or the entire graph of the function is shown.
For each, decide whether it is an even function, an odd function, or neither.

The function r

- Even - Odd - Neither

The function S

- Even - Odd - Neither
$g(x)=-2 x^{4}+3 x^{2}$
- Even - Odd - Neither
$h(x)=-4 x^{5}+3 x^{2}$
- Even - Odd - Neither

Question 32 of 58

Three functions are given below.
For each, decide whether it is an even function, an odd function, or neither.

$f(x)=\frac{1}{6 x^{3}}$	$g(x)=\sqrt[3]{5 x^{2}}$	$h(x)=x\|x+7\|$
Even	Even	Even
0	O	O
Odd	Odd	Odd
0	O	O
Neither	Neither	Neither

Question 33 of 58

Latoya and her husband are each starting a saving plan. Latoya will initially set aside $\$ 50$ and then add $\$ 40.75$ every week to the savings. The amount A (in dollars) saved this way is given by the function $A=50+40.75 N$, where N is the number of weeks she has been saving.

Her husband will not set an initial amount aside but will add $\$ 70.55$ to the savings every week. The amount B (in dollars) saved using this plan is given by the function $B=70.55 \mathrm{~N}$.

Let T be total amount (in dollars) saved using both plans combined. Write an equation relating T to N. Simplify your answer as much as possible.

Question 34 of 58

Suppose that the functions s and t are defined for all real numbers x as follows.

$$
\begin{aligned}
& s(x)=x-1 \\
& t(x)=4 x+3
\end{aligned}
$$

Write the expressions for $(s+t)(x)$ and $(s-t)(x)$ and evaluate $(s \cdot t)(1)$.
$(s+t)(x)$
$(s-t)(x)$
$(s \cdot t)(1)$

Question 35 of 58

Suppose that the functions f and g are defined as follows.

$$
\begin{aligned}
& f(x)=x+5 \\
& g(x)=(x+6)(x-2)
\end{aligned}
$$

(a) Find $\left(\frac{f}{g}\right)(-2)$.
(b) Find all values that are NOT in the domain of $\frac{f}{g}$.

If there is more than one value, separate them with commas.

Question 36 of 58

Suppose that the functions f and g are defined as follows.

$$
f(x)=\frac{x}{x-9} \quad g(x)=\frac{x+6}{x-9}
$$

Find $\frac{f}{g}$. Then, give its domain using an interval or union of intervals.
Simplify your answers.

Question 37 of 58

Suppose that the functions f and g are defined as follows.

$$
\begin{aligned}
& f(x)=\frac{1}{2 x^{2}+3} \\
& g(x)=\sqrt{3 x+5}
\end{aligned}
$$

Find $f: g$ and $f+g$. Then, give their domains using interval notation.

$(f \cdot g)(x)=$
Domain of $f \cdot g:$
$(f+g)(x)=$
Domain of $f+g:$

Question 38 of 58

Suppose that the functions q and r are defined as follows.

$$
\begin{aligned}
& q(x)=2 x+1 \\
& r(x)=-x^{2}
\end{aligned}
$$

Find the following.

$$
\begin{aligned}
& (r \circ q)(-5) \\
& (q \circ r)(-5)
\end{aligned}
$$

Question 39 of 58

Suppose that the functions f and g are defined as follows.

$$
\begin{aligned}
& f(x)=\frac{5}{x}, x \neq 0 \\
& g(x)=x^{2}-8
\end{aligned}
$$

Find the compositions $f \circ f$ and $g \circ g$.
Simplify your answers as much as possible.
(Assume that your expressions are defined for all x in the domain of the composition. You do not have to indicate the domain.)

$$
\begin{aligned}
& (f \circ f)(x)= \\
& (g \circ g)(x)=
\end{aligned}
$$

Question 40 of 58

For the real-valued functions $g(x)=4 x-5$ and $h(x)=\sqrt{x-5}$, find the composition $g \circ h$ and specify its domain using interval notation.

$$
(g \circ h)(x)=
$$

Domain of $g \circ h$:

Question 41 of 58

The volume $V(r)$ (in cubic meters) of a spherical balloon with radius r meters is given by $V(r)=\frac{4}{3} \pi r^{3}$.
The radius $W(t)$ (in meters) after t seconds is given by $W(t)=5 t+3$.
Write a formula for the volume $M(t)$ (in cubic meters) of the balloon after t seconds.
It is not necessary to simplify.

$$
M(t)=
$$

Question 42 of 58

Suppose that y varies directly with x, and $y=15$ when $x=6$.
(a) Write a direct variation equation that relates x and y. Equation:
(b) Find y when $x=7$.
$y=$

Question 43 of 58

For a moving object, the force acting on the object varies directly with the object's acceleration. When a force of 90 N acts on a certain object, the acceleration of the object is $9 \mathrm{~m} / \mathrm{s}^{2}$. If the force is changed to 80 N , what will be the acceleration of the object?

Question 44 of 58

Miguel is running. The number of minutes he has run varies directly with the number of calories he has burned. See the graph below.

Calories burned

(a) How many calories is Miguel burning per minute?

```
\squarecalorie(s)
```

(b) What is the slope of the graph?

Question 45 of 58

Suppose that y varies inversely with x, and $y=10$ when $x=2$.
(a) Write an inverse variation equation that relates x and y. Equation:
(b) Find y when $x=5$.

$$
y=
$$

Question 46 of 58

When a constant force is applied to an object, the acceleration of the object varies inversely with its mass. When a certain constant force acts upon an object with mass 35 kg , the acceleration of the object is $2 \mathrm{~m} / \mathrm{s}^{2}$. When the same force acts upon another object, its acceleration is $5 \mathrm{~m} / \mathrm{s}^{2}$. What is the mass of this object?

Question 47 of 58

Write an equation that expresses the following relationship.
w varies directly with the cube of u and inversely with d
In your equation, use k as the constant of proportionality.

Question 48 of 58

The volume V of a fixed amount of a gas varies directly as the temperature T and inversely as the pressure P.
Suppose that $V=160 \mathrm{~cm}^{3}$ when $T=320$ kelvin and $P=12 \frac{\mathrm{~kg}}{\mathrm{~cm}^{2}}$. Find the temperature when $V=90 \mathrm{~cm}^{3}$ and
$P=16 \frac{\mathrm{~kg}}{\mathrm{~cm}^{2}}$.
\square kelvin

Question 49 of 58

Use the graph of the parabola to fill in the table.

(a) Does the parabola open upward or downward?
$0 \quad 0$
upward downward
(b) Find the intercept(s).

For both the x - and y-intercept(s), make sure to do the following.

- If there is more than one, separate them with commas.
- If there are none, select "None".
x-intercept(s): \square
y-intercept(s):

(c) Find the equation of the axis of symmetry.
equation of axis of symmetry: \square
(d) Find the coordinates of the vertex.
vertex:

Question 50 of 58

Graph the parabola.

$$
y=x^{2}-4 x+2
$$

Question 51 of 58

Graph the parabola.

$$
y=3(x-2)^{2}+1
$$

Question 52 of 58

Graph the parabola.

$$
y=-2 x^{2}+8 x-3
$$

Question 53 of 58

Find the x-intercept(s) and the coordinates of the vertex for the parabola $y=x^{2}-4 x-5$. If there is more than one x-intercept, separate them with commas.

Question 54 of 58

Answer the questions below about the quadratic function.

$$
f(x)=-2 x^{2}-4 x-6
$$

Does the function have a minimum or maximum value?
What is the function's minimum or maximum value?
Where does the minimum or maximum value occur? $x=$

Question 55 of 58

A ball is thrown vertically upward. After t seconds, its height h (in feet) is given by the function $h(t)=96 t-16 t^{2}$. What is the maximum height that the ball will reach?

Do not round your answer.

Question 56 of 58

Raina has 360 meters of fencing and wishes to form three sides of a rectangular field. The fourth side borders a river and will not need fencing.

As shown below, one of the sides has length x (in meters).

(a) Find a function that gives the area $A(x)$ of the field (in square meters) in terms of x.
$A(x)=\square$
(b) What side length x gives the maximum area that the field can have?

Side length $x: \square$ meters
(c) What is the maximum area that the field can have?

Maximum area: \square square meters

Question 57 of 58

The graph of a quadratic function with vertex $(-4,2)$ is shown in the figure below.
Find the domain and the range.

Write the domain and range using interval notation.

$$
\begin{aligned}
& \text { domain }= \\
& \text { range }= \\
&
\end{aligned}
$$

Question 58 of 58

Find the equation of the quadratic function f whose graph is shown below.

Practice Problems for Exam 3 Version \#1 Answers for class Lacoste College Algebra Fall 2019

Question 1 of 58

Question 2 of 58

[^0]

Question 4 of 58

$f(125)=8$
$f(-64)=-1$

Question 5 of 58

Question 6 of 58

Question 7 of 58

Question 8 of 58

Question 9 of 58

Question 10 of 58

Question 11 of 58

Question 13 of 58

Question 14 of 58

Question 15 of 58

| | $y=\frac{3}{4}\|x\|$ | $y=-2\|x\|$ | $y=\frac{1}{2}\|x\|$ | $y=-4\|x\|$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| (a) For each function, choose whether its graph
 opens up or down | up | down | up | |
| (b) Choose the function with the narrowest
 graph | 0 | 0 | 0 | \mathbf{c} |
| (c) Choose the function with the widest
 graph | 0 | 0 | $\mathbf{0}$ | 0 |

Question 16 of 58
$f(x)=5 x^{2}+2$

Question 17 of 58

Question 18 of 58

Question 19 of 58

The graph of $y=f(x)$ is shown. Graph $y=\frac{1}{2} f(x)$.

The graph of $y=g(x)$ is shown. Graph $y=g\left(\frac{1}{2} x\right)$.

Question 20 of 58

The graph of $y=f(x)$ is shown. Draw the graph of $y=2 f(x-4)$.

The graph of $y=g(x)$ is shown. Draw the graph of $y=g(-x)-1$.

Question 21 of 58

Question 22 of 58
$k(x)=(x-4)^{2}+3$

Question 23 of 58

Question 24 of 58

$x=y^{4}-y^{2}+2$			$35 x^{4}+30 y^{4}=82$		
Symmetry:			Symmetry:		
$x \text {-axis }$	$\begin{aligned} & \square \\ & y \text {-axis } \end{aligned}$	origin	$x \text {-axis }$	$y^{\text {-axis }}$	origin
$\Gamma_{\text {none }}$	bove		$\stackrel{\square}{\text { none o }}$	bove	

Question 25 of 58

$g(-1)=\frac{15}{4}$
$g(2)=4$
$g(4)=0$

Question 26 of 58

$(0,3),(5,6)$

Question 27 of 58

(a) All values at which f has a local maximum: $-2,4$
(b) All local maximum values of $f: 3,2$

Question 28 of 58

Question 29 of 58

Is the function continuous?
© Yes
○ No

Question 30 of 58

Is the function f continuous? © Yes © No

Question 31 of 58

The function r		The function s	

Question 32 of 58

$f(x)=\frac{1}{6 x^{3}}$	$g(x)=\sqrt[3]{5 x^{2}}$	$h(x)=x\|x+7\|$
Oven	$\begin{aligned} & \text { © } \\ & \text { Even } \end{aligned}$	$\begin{aligned} & \text { O } \\ & \text { Even } \end{aligned}$
$\stackrel{\odot}{O}^{\circ}$	${ }^{\text {Odd }}$	${ }^{\text {Odd }}$
Neither	$\begin{aligned} & \mathrm{O} \\ & \text { Neither } \end{aligned}$	$\stackrel{\stackrel{\bullet}{N}}{\text { Neither }}$

Question 33 of 58
$T=50+111.30 N$

Question 34 of 58

$(s+t)(x)=5 x+2$
$(s-t)(x)=-3 x-4$
$(s \cdot t)(1)=0$

Question 35 of 58

(a) $\left(\frac{f}{g}\right)(-2)=-\frac{3}{16}$
(b) Value(s) that are NOT in the domain of $\frac{f}{g}:-6,2$

Question 36 of 58

$\left(\frac{f}{g}\right)(x)=\frac{x}{x+6}$
Domain of $\frac{f}{g}:(-\infty,-6) \cup(-6,9) \cup(9, \infty)$

Question 37 of 58

$$
\begin{aligned}
& (f g)(x)=\frac{\sqrt{3 x+5}}{2 x^{2}+3} \\
& \text { Domain of } f g:\left[-\frac{5}{3}, \infty\right) \\
& (f+g)(x)=\frac{1}{2 x^{2}+3}+\sqrt{3 x+5} \\
& \text { Domain of } f+g:\left[-\frac{5}{3}, \infty\right)
\end{aligned}
$$

Question 38 of 58

$(r \circ q)(-5)=-81$
$(q \circ r)(-5)=-49$

Question 39 of 58

$(f \circ f)(x)=x$
$(g \circ g)(x)=x^{4}-16 x^{2}+56$

Question 40 of 58
$(g \circ h)(x)=4 \sqrt{x-5}-5$
Domain of $g \circ h:[5, \infty)$

Question 41 of 58

$$
M(t)=\frac{4}{3} \pi(5 t+3)^{3}
$$

Question 42 of 58

(a) Write a direct variation equation that relates x and y. Equation: $y=\frac{5}{2} x$
(b) Find y when $x=7$.

$$
y=\frac{35}{2}
$$

Question 43 of 58

$8 \mathrm{~m} / \mathrm{s}^{2}$

Question 44 of 58

(a) How many calories is Miguel burning per minute?

$$
10 \text { calorie(s) }
$$

(b) What is the slope of the graph?

$$
\frac{1}{10}
$$

Question 45 of 58

(a) Write an inverse variation equation that relates x and y.

$$
\text { Equation: } y=\frac{20}{x}
$$

(b) Find y when $x=5$.

$$
y=4
$$

Question 46 of 58

14 kg

Question 47 of 58
$w=\frac{k u^{3}}{d}$

Question 48 of 58

The temperature is 240 kelvin.

Question 49 of 58

(a) Does the parabola open upward or downward?
0 \odot
upward
downward
(b) Find the intercept(s).

For both the x - and y-intercept(s), make sure to do the following.

- If there is more than one, separate them with commas.
- If there are none, select "None".
x-intercept(s): $\quad-2,6$
y-intercept(s): 3
(c) Find the equation of the axis of symmetry.
equation of axis of symmetry: $x=2$
(d) Find the coordinates of the vertex.
vertex: $(2,4)$

Question 50 of 58

Question 51 of 58

Question 52 of 58

Question 53 of 58

x-intercept(s): - 1,5
vertex: $(2,-9)$

Question 54 of 58

Does the function have a minimum or maximum value?
Minimum Maximum

What is the function's minimum or maximum value?
-4

Where does the minimum or maximum value occur?
$x=-1$

Question 55 of 58

Height: 144 feet

Question 56 of 58

(a) Find a function that gives the area $A(x)$ of the field (in square meters) in terms of x.

$$
A(x)=360 x-2 x^{2}
$$

(b) What side length x gives the maximum area that the field can have?

Side length x : 90 meters
(c) What is the maximum area that the field can have?

Maximum area: 16,200 square meters

Question 57 of 58

domain: $(-\infty, \infty)$
range: $[2, \infty)$

Question 58 of 58

$f(x)=2(x-1)^{2}-4$

[^0]: Question 3 of 58

